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Ernst, Machta, Dorfman, and van Beijeren [J. Stat. Phys. 34:477 (1984); 35:413 
(1984)] have proposed that diffusion in a stationary random medium is 
described by a fluctuating diffusion equation involving a coarse-grained local 
diffusion coefficient K(r) and free volume fraction O(r). We show that for a par- 
ticular class of models [lattice diffusion with random transition rates and con- 
stant tp(r)], their prediction for the long time tail in the velocity autocorrelation 
function is the correct asymptotic limit. 
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In two recent papers, (t) Ernst, Machta, Dorfman,. and van Beijeren 
(EMDvB) proposed a generalized diffusion equation to describe diffusion 
in statically disordered media. In their intuitively appealing picture, each 
realization of such a medium was characterized by a spatially varying 
coarse-grained diffusion tensor K(r) and free volume fraction ~,(r). The par- 
ticle current J and the concentration c were related by a generalized form 
of Fick's law, as follows: 

J = - K '  V(c/O) (1) 

This equation, combined with the usual continuity equation, gave their 
generalized diffusion equation 

ac  
at  = V K �9 V ( c / ~ )  (2)  
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This approach led to predictions for the long-time properties of the system, 
such as the long time tail in the velocity autocorrelation function (VAF), in 
terms of the fluctuations of the spatial averages of K and ~ about their 
expected values. The authors then applied this apparatus to several specific 
models, with good agreement with previously known results. 

In the present paper we present a derivation of EMDvB's VAF result 
for a class of models. We consider Markovian diffusion on a lattice with 
statically disordered transition rates. The equilibrium concentration is 
taken to be uniform, so in this case r  1. 

Let the concentration Cj at site j of a regular d-dimensional lattice dif- 
fuse according to 

0 
- - C = W . C  (3) 
Ot 

where C is an N-dimensional vector and W is an N • N matrix of random 
transition rates Wjk. We impose the constraints 

Z W j k = Z  Wjk=0 (4) 
j k 

in order to conserve total concentration and guarantee uniform concen- 
tration at equilibrium. We exclude models where the Wjk can be arbitrarily 
small. A distribution of W's with too much weight near zero may give rise 
to an extra term in the long time tail; an example is given by Machta. (2) In 
order that the system evolution be dominated by diffusion rather than drift, 
we also require sufficient statistical isotropy that for each dimension e, 

where L~ is the sample length in the ~ direction. This inequality is satisfied 
automatically if Wjk--Wkj, as for instance in the familiar random bond 
case with W:k = w:k-  6:k ~ t  wjl, wjk = wkj. [In the thermodynamic limit 
( L ~ o o )  (5) reduces to the requirement that the first moment 
~j,k Wjk(Rj--Rk) vanish, and we must also stipulate that the second 
moment ~j,k W:k(Rj--Rg) 2 exists.] 

The Fourier transform of any N • N matrix A is 

1 A~q, = ~  Ajke iqRj i,"Rk (6) 

The Green's function corresponding to the equation of motion (3) is 

U ( z )  = ( z l  - W )  1 (7 )  
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where z is the Laplace transform variable. Then the diagonal part of the 
Fourier-transformed Green's function is, to second order in q, 

1 
Gqq(z) = z + qq:Ko(z) + --" (8) 

The term linear in q can be neglected due to inequality (5). Our fluctuating 
diffusion tensor Ko can be obtained from 

z 2 

Ko(z )  = - ~ -  v . v ~  Gqq(z) Iq - o ( 9 )  

We will see later that K o is the spatial average of K(r). 
When averaged over some statistically homogeneous and isotropic 

ensemble, the Green's function has the form 

<(3(z))  = [ z l  + ~ ( z ) ]  -1 ( lO) 

for some ~(z )  which is related to the average diffusion coefficient D(z)  by 
the relation 

~qq(z) = q2D(z) + higher order in q (11 ) 

We assume that D(z) ,  and hence ~(z) ,  has a well-defined zero-frequency 
limit. The diffusion constant can be found from 

z 2 

D(z)= -~-~Vg<~Gqq(z))[q=o (12) 

and it is indeed the ensemble average of the fluctuating diffusion tensor K0: 

(Ko(z))  = D(z)l (13) 

In order to elucidate the properties of ~ G ), it will be useful to express G in 
terms of the related matrix in which ~(z )  is replaced by ~P(z = 0 + ), 

g(z)= [zl  + ~ ( 0 + ) ]  -1 (14) 

and a fluctuation matrix 
V=W+~F(0+) (15) 

which contains the random parts of G. Then the Green's function can be 
expanded as a series in terms of g and V. Using the T matrix of the entire 
lattice (not that of a single defect), 

T(z )=V.E l -g (z ) .V ]  1 (16) 
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we sum the series and write 

G = g + g . T . g  (17) 

Since g is translationally invariant, its Fourier transform is diagonal. 
Averaging the last equation gives us 

<Gqq> = gqq + g2qq< Tqq> (18) 

Then it follows readily that the z-* 0 + limit of < Tqq > vanishes, so that 

< r.~(O+ )> = 0 (19) 

This is the point at which it is important to exclude models where the 
W's can be arbitrarily small. The limit z ~ 0+  in (19) implies that for each 
lattice realization in the average, Tqq is evaluated at a frequency z small 
compared to the rate Wjk of any bond of the lattice. On the other hand, if 
the W's could be arbitrarily small, then for any positive z the realization 
average < Tqq(Z)> could include contributions from lattices for which some 
W's were small compared to z. Thus the zero-frequency limit of the 
realization average might not equal the average of the limit. 

Now according to Eq. (12), the average diffusion coefficient is 

Z 2 

D(z) = D(O + ) - -~-,V~ g~q(z)< Tqq(Z) } I .  = o 
z a  

( 2 0 )  

It is easily shown from the sum rule (4) and equation (11) that for any q, 

:roq = Tqo = 0 (21) 

Therefore the Laplacian must act on <Tqq>. We are free to subtract 
<Tqq(O+)>, which was shown to be zero, so that 

D(z) = D ( 0 +  ) - ~ V Z < T q q ( Z ) -  Tq.(0 + )> [q=0 (22) 

By writing the definition of T as 

[1  - O ( z )  �9 V ]  . T ( z )  = V ( 2 3 )  

and subtracting from this equation its z-* 0 + limit, we see that 

T(z) -T(O+)  = { [T (z ) -T (O+) ] ' g ( z )+T (O+)  

�9 [ g ( z ) - g ( O + ) ] } - V  (24)  
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We rearrange, using (16) again, to derive the identity 

T(z) - T ( 0 +  ) = T(0+ ). [g(z) - g(0+ )] .T(z) (25) 

We would like to determine the asymptotic form of the VAF for long 
times, which is equivalent to the leading singular behavior of the diffusion 
coefficient D(z) for small z. By substituting identity (25) into itself, it is 
apparent that for small z, 

T ( z ) - T ( 0 + ) = T ( 0 + ) .  [ g ( z ) - g ( 0 + ) ]  .T(0+)+O(z 2) (26) 

According to gq. (17), the effect of the disorder on the system is 
embodied in the T matrix. In the limit z ~ 0 +,  T gives fluctuations in the 
random diffusion tensor Ko(0+) about its ensemble average, and its 
small-z behavior is ultimately equivalent to the disorder-induced long time 
tail in the VAF. Equation (26) leads to the proportionality between the 
VAF and the squared fluctuations in K0(0+) with a known nonrandom 
coefficient depending on z. 

We put (26) into expression (22) for the diffusion coefficient; we find 
that 

1 
D(z)=D(O+ )-~l ~_, [gq,q~(Z)-gq,q~(O+ )] 

ql~O 

x <Vqr..,(0+)-VqTq,q(0+)> Iq-o (27) 

We know that gqq(Z)= Ez+q2D(O+)] -1, so that most singular part of 
D(z) comes from the terms of small ql in the sum. We are therefore 
justified in imposing an upper cutoff qc on the sum and neglecting the con- 
tribution of terms with ql > qc. We may now use the small-wave-number 
expression (11) to evaluate gqlq~. For small q and q~ the leading behavior 
of Tqql(OAv ) is 

Tqq~(0 + ) = q" x'  ql + O(q2q~) + O(qq~) (28) 

due to (21), for appropriate choice of ~. Therefore to leading order, 

D(z)-D(O+) ~1 ~ z (q ! --~ ~-~-: q~ ) (29) 
dq~o q2D(O+ )[z + q2D(O+ )] 

But ( q l - x . ~ . q l )  can be replaced by (q~/d)(-c :z) ,  as may be seen by sum- 
ming over orientations of q l before magnitudes. Therefore we find that the 
leading behavior of D(z) for small z is 

Z qc 1 
D(z)-D(O+)"~d2D(O+ )(z:z) ~ + q 2 D ( 0 + )  (30) 

ql~O Z 
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We now convert the sum to an integral and invert the Laplace transform. 
Since D(z) is the Laplace transform of the velocity autocorrelation function 
~b2(t), we find the long time tail behavior 

2~V 
~2(t) - -  (~:~)[4rcD(O+)t] (d+2)/2 (3t) 

d 

where V is the volume of the system. Note that this asymptotic result does 
not depend on qc. 

In order to identify ~, we put the Green's function (17) into expression 
(9) for the diffusion tensor. Eliminating gqq as before, we find that 

Ko(z)  -- O ( 0 +  )1 - �89 Tqq(Z) I. - o  (32)  

Then in the limit z-~ 0 +,  we have 

K0(0 + ) - ( Ko(0 + ) ) = -�89 Tqq(0 + ) I q = 0 (33) 

We identify the left-hand side of this equation as 6K0, so Eq. (28), which 
defines ,, leads to 

6Ko=z (34) 

Then the VAF may be written as 

2~V 
~2(t) d ((hK~176 (d+2)/~ (35) 

for large t. This is in complete agreement with Eq. (4.22) of the first paper 
of EMDvB, when our K0 is identified as the spatial average of K(r). 

We have not derived the generalized diffusion equation of EMDvB, 
but we have established the correctness of its prediction for the asymptotic 
behavior of the VAF for our class of models. We have also given a precise 
(but formal) specification of the fluctuating diffusion tensor Ko. Our iden- 
tity I-Eq. (26)] relating the small-z T matrix to the square of its static limit 
would possibly be useful in other problems involving long time tails as well. 
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